Two non-elementary integral functions defined using central factorial powers
Abstract
Keywords
Full Text:
PDFReferences
Abramowitz M., Stegun I.A. Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, Dover, New York, 1972.
Anokhov S. "Physical approach to analytic simulation of Fresnel integrals", J. Opt. Soc. Am. A., 2007; 24(1): pp. 197-203. doi:10.1364/JOSAA.24.000197
Bateman H. Higher Transcendental Functions, McGraw-Hill, New York, 1953; vol. 1, 2. doi:10.1126/science.120.3112.302-b
Born M., Wolf E. Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light, Cambridge University Press, Cambridge, 1999.
Comtet L. Advanced Combinatorics: The Art of Finite and Infinite Expansion, Reidel, Dordrecht (Netherlands), 1972.
Goy T.P. "On differential equations of functions generated by central factorial powers", Proc. of Crimea Inter. Math. Conf. (CIMC), 2013; pp. 4-5. (in Ukrainian)
Goy T.P., Zatorsky R.A. "New functions defined by rising factorials, and its properties", Bukovyna Math. J., 2013; 1(1-2), pp. 28-33. (in Ukrainian)
Goy T.P., Zatorsky R.A. "New integral functions generated by rising factorials", Carpath. Math. Publ., 2013; 5(2): pp. 217-224. doi:10.15330/cmp.5.2.217-224
Graham R.L., Knuth D.E., Patashnik O. Concrete Mathematics: A Foundation for Computer Science, Reading, Addison-Wesley, 1994.
Jordan C. Calculus of Finite Differences, Chelsea, New York, 1939.
Kelly A., Nagy B. "Reactive nonholonomic trajectory generation via parametric optimal control", Int. J. Robot. Res., 2003; 22(7-8): pp. 583-601. doi:10.1177/02783649030227008
Litvinov I.I. "Fresnel integral in the complex form: its new representation, interpretation, and application in problems of wave beam diffraction", Phys. Wave Phenom., 2010; 18(4): pp. 267-276. doi:10.3103/S1541308X10040072
Monk K., Zou Q., Conley D. "An approximate solution for the wave energy shadow in the lee of an array of overtopping type wave energy converters", Coast. Eng., 2013; 73: pp. 115-132. doi:10.1016/j.coastaleng.2012.10.004
Roman S. The Umbral Calculus, Academic Press, New York, 1984. doi:10.1007/0-387-27474-X_19
Steffensen J.F. "On the definition of the central factorial", J. Inst. Actuaries, 1933; 64(2): pp. 165-168. doi:10.1017/S0020268100032893
Walton D.J., Meek D.S. "A controlled clothoid spline", Comput. Graphics, 2006; 29: pp. 353-363. doi:10.1016/j.cag.2005.03.008
Zatorsky R.A., Malyarchuk A.R. "Factorial degrees and triangular matrices", Carpath. Math. Publ., 2009; 1(2): pp. 161-171. (in Ukrainian)
DOI: https://doi.org/10.15421/241512
Refbacks
- There are currently no refbacks.
Copyright (c) 2015 T.P. Goy
This work is licensed under a Creative Commons Attribution 4.0 International License.