On some generalization of pronormal subgroups in locally finite group
Abstract
We proved that if every subgroup of locally finite group is monopronormal, then this group is a $$$\overline{T}$$$-group.
Keywords
locally finite group; monopronormal subgroup; contranormal subgroup; Dedekind group; supersoluble group; locally nilpotent residual; $$$\overline{T}$$$-group
Full Text:
PDFReferences
Robinson D.J.S. "Groups in which normality is a transitive relation", Proc. Cambridge Phil. Soc., 1964; 60: pp. 21-38.
Ballester-Bolinches A., Esteban-Romero R. "Sylow permutable subnormal subgroups of finite groups", J. Algebra, 2002; 251: pp. 727-738.
Baer R. "Durch Formationen bestimmte Zerlegungen von Normalteilern endlicher Gruppen", J. Algebra, 1972; 20: pp. 38-56. (in German)
Ol’shanskii A. Yu. "Geometry of defining relations in groups", Mathematics and its Applications, 1991.
Subbotin I.Ya., Kuzenny N.F. "Locally soluble groups in which all infinite subgroups are pronormal", Izv. VUZov, Matem., 1988; 32: pp. 126-131.
DOI: https://doi.org/10.15421/241513
Refbacks
- There are currently no refbacks.
Copyright (c) 2015 A.A. Pypka, N.A. Turbay

This work is licensed under a Creative Commons Attribution 4.0 International License.











