On some generalization of pronormal subgroups in locally finite group

A.A. Pypka (Oles Honchar Dnipropetrovsk National University)
N.A. Turbay (Oles Honchar Dnipropetrovsk National University)

Abstract


We proved that if every subgroup of locally finite group is monopronormal, then this group is a $$$\overline{T}$$$-group.

Keywords


locally finite group; monopronormal subgroup; contranormal subgroup; Dedekind group; supersoluble group; locally nilpotent residual; $$$\overline{T}$$$-group

Full Text:

PDF

References


Robinson D.J.S. "Groups in which normality is a transitive relation", Proc. Cambridge Phil. Soc., 1964; 60: pp. 21-38.

Ballester-Bolinches A., Esteban-Romero R. "Sylow permutable subnormal subgroups of finite groups", J. Algebra, 2002; 251: pp. 727-738.

Baer R. "Durch Formationen bestimmte Zerlegungen von Normalteilern endlicher Gruppen", J. Algebra, 1972; 20: pp. 38-56. (in German)

Ol’shanskii A. Yu. "Geometry of defining relations in groups", Mathematics and its Applications, 1991.


Subbotin I.Ya., Kuzenny N.F. "Locally soluble groups in which all infinite subgroups are pronormal", Izv. VUZov, Matem., 1988; 32: pp. 126-131.




DOI: https://doi.org/10.15421/241513

  

Refbacks

  • There are currently no refbacks.


Copyright (c) 2015 A.A. Pypka, N.A. Turbay

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.


Registered in

More►


ISSN (Online): 2664-5009
ISSN (Print): 2664-4991
DNU